Topic modeling in hospitality and tourism research: Application areas, business insights, and managerial implications
DOI:
https://doi.org/10.5937/menhottur2500010GKeywords:
topic modeling, natural language processing, hospitality, user-generated contentAbstract
Purpose – Topic modeling (TM) explores customer experience and behaviors from large volumes of textual data, such as online reviews uncovering (dis)satisfaction cues often overlooked by hospitality managers. Despite its potential, TM application in hospitality research is limited compared to other social science methods. This paper aims to investigate the scope of TM research in the hospitality domain and contribute to the understanding of the areas where it can be effectively applied, the purposes it can serve, and the types of problems it can address. Methodology – The research methodology is rooted in the systematic literature review – 40 relevant papers were collected and analysed to identify the areas of hospitality where TM is mostly applied, business insights derived from TM application, and commonly utilised TM approaches. Findings – TM research in hospitality is conducted in five research areas: accommodation and lodging, food and beverages, attractions and events, nature-based tourism, and travel services. Researchers apply TM to gain nine different business insights, such as dissatisfaction drivers, segment-based preferences, sentiments, preference changes over time, service quality perception, or underexplored areas. Implications – TM-based research provides actionable recommendations for the enhancement of managerial practices within the hospitality industry, such as promotion and destination management, service improvements, and reduction of overtourism.
Downloads
References
Aggarwal, S., & Gour, A. (2020). Peeking inside the minds of tourists using a novel web analytics approach. Journal of Hospitality and Tourism Management, 45, 580–591. https://doi.org/10.1016/j.jhtm.2020.10.009
Anandarajan, M., Hill, C., & Nolan, T. (2019). Practical text analytics: Maximizing the value of text data. Springer Cham. https://doi.org/10.1007/978-3-319-95663-3
Banks, G. C., Woznyj, H. M., Wesslen, R. S., & Ross, R. L. (2018). A review of best practice recommendations for text analysis in R (and a user-friendly app). Journal of Business and Psychology, 33, 445–459. https://doi.org/10.1007/s10869-017-9528-3
Celata, F., Capineri, C., & Romano, A. (2020). A room with a (re)view. Short-term rentals, digital reputation and the uneven spatiality of platform-mediated tourism. Geoforum, 112, 129–138. https://doi.org/10.1016/j.geoforum.2020.04.007
Celuch, K. (2021). Customers’ experience of purchasing event tickets: Mining online reviews based on topic modeling and sentiment analysis. International Journal of Event and Festival Management, 12(1), 36–50. https://doi.org/10.1108/IJEFM-06-2020-0034
Ding, K., Choo, W. C., Ng, K. Y., & Ng., S. I. (2020). Employing structural topic modelling to explore perceived service quality attributes in Airbnb accommodation. International Journal of Hospitality Management, 91, 102676. https://doi.org/10.1016/j.ijhm.2020.102676
Egger, R., & Yu, J. (2022). Identifying hidden semantic structures in Instagram data: A topic modelling comparison. Tourism Review, 77(4), 1234–1246. https://doi.org/10.1108/TR-05-2021-0244
Gao, B., Zhu, M., Liu, S., & Jiang, M. (2022). Different voices between Airbnb and hotel customers: An integrated analysis of online reviews using structural topic model. Journal of Hospitality and Tourism Management, 51, 119–131. https://doi.org/10.1016/j.jhtm.2022.03.004
Garner, B., Thornton, C., Pawluk, A. L., Cortez, R. M., Johnston, W., & Ayala, C. (2022). Utilizing text-mining to explore consumer happiness within tourism destinations. Journal of Business Research, 139, 1366–1377. https://doi.org/10.1016/j.jbusres.2021.08.025
Gregoriades, A., Pampaka, M., Herodotou, H., & Christodoulou, E. (2023). Explaining tourist revisit intention using natural language processing and classification techniques. Journal of Big Data, 10(1), 1–31. https://doi.org/10.1186/s40537-023-00740-5
Grljević, O., & Marić, M. (2024). A comprehensive analysis of online reviews in the Srem region through topic modeling. In V. Bevanda, & S. Štetić (Eds.), 8th International Thematic Monograph: Modern Management Tools and Economy of Tourism Sector in Present Era (pp. 291-311). Belgrade, Serbia: Association of Economists and Managers of the Balkans in cooperation with the Faculty of Tourism and Hospitality, Ohrid, North Macedonia. https://doi.org/10.31410/tmt.2023-2024.291
Grljević, O., Marić, M., & Božić, R. (2025). Exploring mobile application user experience through topic modeling. Sustainability, 17(3), 1109. https://doi.org/10.3390/su17031109
Gruen, T. W., Osmonbekov, T., & Czaplewski, A. J. (2006). eWOM: The impact of customer-to-customer online know-how exchange on customer value and loyalty. Journal of Business Research, 59(4), 449–456, https://doi.org/10.1016/j.jbusres.2005.10.004.
Gursoy, D., & Cai, R. (2025). Artificial intelligence: An overview of research trends and future directions. International Journal of Contemporary Hospitality Management, 37(1), 1–17. https://doi.org/10.1108/IJCHM-03-2024-0322
Han, C., & Yang, M. (2021). Revealing Airbnb user concerns on different room types. Annals of Tourism Research, 89, 103081. https://doi.org/10.1016/j.annals.2020.103081
Hu, N., Zhang, T., Gao, B., & Bose, I. (2019). What do hotel customers complain about? Text analysis using structural topic model. Tourism Management, 72, 417–426. https://doi.org/10.1016/j.tourman.2019.01.002
Janssens, B., Bogaert, M., & Van den Poel, D. (2021). Evaluating the influence of Airbnb listings’ descriptions on demand. International Journal of Hospitality Management, 99, 103071. https://doi.org/10.1016/j.ijhm.2021.103071
Kar, A. K., Kumar, S., & Ilavarasan, P. V. (2021). Modelling the service experience encounters using user-generated content: A text mining approach. Global Journal of Flexible Systems Management, 22, 267–288. https://doi.org/10.1007/s40171-021-00279-5
Kim, H., So, K. K. F., Shin, S., & Li, J. (2025). Artificial intelligence in hospitality and tourism: Insights from industry practices, research literature, and expert opinions. Journal of Hospitality & Tourism Research, 49(2), 366–385. https://doi.org/10.1177/10963480241229235
Kim, K., Park, O., Barr, J., & Yun, H. (2019). Tourists’ shifting perceptions of UNESCO heritage sites: Lessons from Jeju Island-South Korea. Tourism Review, 74(1), 20–29. https://doi.org/10.1108/TR-09-2017-0140
Kirilenko, A. P., Stepchenkova, S. O., & Dai, X. (2021). Automated topic modeling of tourist reviews: Does the Anna Karenina principle apply? Tourism Management, 83, 104241. https://doi.org/10.1016/j.tourman.2020.104241
Kitchenham, B., & Charters, S. M. (2007). Guidelines for performing systematic literature reviews in software engineering. Keele University and Durham University Joint Report.
Kwon, W., Lee, M., & Back, K.-J. (2020). Exploring the underlying factors of customer value in restaurants: A machine learning approach. International Journal of Hospitality Management, 91, 102643. https://doi.org/10.1016/j.ijhm.2020.102643
Kwon, W., Lee, M., & Bowen, J. T. (2022). Exploring customers’ luxury consumption in restaurants: A combined method of topic modeling and three-factor theory. Cornell Hospitality Quarterly, 63(1), 66–77. https://doi.org/10.1177/19389655211037667
Laureate, C. D. P., Buntine, W., & Linger, H. (2023). A systematic review of the use of topic models for short text social media analysis. Artificial Intelligence Review, 56, 14223–14255. https://doi.org/10.1007/s10462-023-10471-x
Law, R., Lin, K. J., Ye, H., & Fong, D. K. C. (2024). Artificial intelligence research in hospitality: A state-of-the-art review and future directions. International Journal of Contemporary Hospitality Management, 36(6), 2049–2068. https://doi.org/10.1108/IJCHM-02-2023-0189
Li, W., Guo, K., Shi, Y., Zhu, L., & Zheng, Y. (2018). DWWP: Domain-specific new words detection and word propagation system for sentiment analysis in the tourism domain. Knowledge-Based Systems, 146, 203–214. https://doi.org/10.1016/j.knosys.2018.02.004
Liu, H., Jayawardhena, C., Shukla, P., Osburg, V.-S., & Yoganathan, V. (2024). Electronic word of mouth 2.0 (eWOM 2.0) – The evolution of eWOM research in the new age. Journal of Business Research, 176, 114587. https://doi.org/10.1016/j.jbusres.2024.114587
Luo, J. M., Vu, H. Q., Li, G., & Law, R. (2020). Topic modelling for theme park online reviews: Analysis of Disneyland. Journal of Travel & Tourism Marketing, 37(2), 272–285. https://doi.org/10.1080/10548408.2020.1740138
Luo, Y., He, J., Mou, Y., Wang, J., & Liu, T. (2021). Exploring China’s 5A global geoparks through online tourism reviews: A mining model based on machine learning approach. Tourism Management Perspectives, 37, 100769. https://doi.org/10.1016/j.tmp.2020.100769
Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A., ... & Adam, S. (2018). Applying LDA topic modeling in communication research: Toward a valid and reliable methodology. Communication Methods and Measures, 12(2-3), 93–118. https://doi.org/10.1080/19312458.2018.1430754
Marcolin, C. B., Becker, J. L., Wild, F., Behr, A., & Schiavi, G. (2021). Listening to the voice of the guest: A framework to improve decision-making processes with text data. International Journal of Hospitality Management, 94, 102853. https://doi.org/10.1016/j.ijhm.2020.102853
Mazarura, J., & De Waal, A. (2016). A comparison of the performance of latent Dirichlet allocation and the Dirichlet multinomial mixture model on short text. 2016 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech) (pp. 1–6). Stellenbosch, South Africa: IEEE. https://doi.org/10.1109/RoboMech.2016.7813155
Mirzaalian, F., & Halpenny, E. (2021). Exploring destination loyalty: Application of social media analytics in a nature-based tourism setting. Journal of Destination Marketing & Management, 20, 100598. https://doi.org/10.1016/j.jdmm.2021.100598
Nguyen, V.-H., & Ho, T. (2023). Analysing online customer experience in hotel sector using dynamic topic modelling and net promoter score. Journal of Hospitality and Tourism Technology, 14(2), 258–277. https://doi.org/10.1108/JHTT-04-2021-0116
Núñez, J. C. S., Gómez-Pulido, J. A., & Ramírez, R. R. (2024). Machine learning applied to tourism: A systematic review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 14(5), e1549. https://doi.org/10.1002/widm.1549
Papilloud, C., & Hinneburg, A. (2018). Qualitative Textanalyse mit Topic-Modellen: Eine Einführung für Sozialwissenschaftler [Qualitative text analysis with topic models: An introduction for social scientists]. Wiesbaden: Springer. https://doi.org/10.1007/978-3-658-21980-2
Park, E., Chae, B., Kwon, J., & Kim, W.-H. (2019). The effects of green restaurant attributes on customer satisfaction using the structural topic model on online customer reviews. Sustainability, 12(7), 2843. https://doi.org/10.3390/su12072843
Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S. K., … & Rand, D. G. (2014). Structural Topic Models for Open-Ended Survey Responses. American Journal of Political Science, 58(4), 1064-1082. https://doi.org/10.1111/ajps.12103
Sánchez-Franco, M. J., & Aramendia-Muneta, M. E. (2023). Why do guests stay at Airbnb versus hotels? An empirical analysis of necessary and sufficient conditions. Journal of Innovation & Knowledge, 8(3), 100380. https://doi.org/10.1016/j.jik.2023.100380
Sanchez-Franco, M. J., Cepeda-Carrion, G., & Roldán, J. L. (2019). Understanding relationship quality in hospitality services: A study based on text analytics and partial least squares. Internet Research, 29(3), 478–503. https://doi.org/10.1108/IntR-12-2017-0531
Shafqat, W., & Byun, Y.-C. (2020). A recommendation mechanism for under-emphasized tourist spots using topic modeling and sentiment analysis. Sustainability, 12(1), 320. https://doi.org/10.3390/su12010320
Shang, Z., & Luo, J. (2022). Topic modeling for hiking trail online reviews: Analysis of the Mutianyu Great Wall. Sustainability, 14(6), 3246. https://doi.org/10.3390/su14063246
Shang, Z., Luo, J. M., & Kong, A. (2022). Topic modelling for ski resorts: An analysis of experience attributes and seasonality. Sustainability, 14(6), 3533. https://doi.org/10.3390/su14063533
Sim, Y., Lee, S. K., & Sutherland, I. (2021). The impact of latent topic valence of online reviews on purchase intention for the accommodation industry. Tourism Management Perspectives, 40, 100903. https://doi.org/10.1016/j.tmp.2021.100903
Srinivas, S., & Ramachandiran, S. (2024). Passenger intelligence as a competitive opportunity: Unsupervised text analytics for discovering airline-specific insights from online reviews. Annals of Operations Research, 333, 1045–1075. https://doi.org/10.1007/s10479-022-05162-9
Sutherland, I., & Kiatkawsin, K. (2020). Determinants of guest experience in Airbnb: A topic modeling approach using LDA. Sustainability, 12(8), 3402. https://doi.org/10.3390/su12083402
Taecharungroj, V. (2023). Experiential brand positioning: Developing positioning strategies for beach destinations using online reviews. Journal of Vacation Marketing, 29(3), 313–330. https://doi.org/10.1177/13567667221095588
Tang, F., Yang, J., Wang, Y., & Ge, Q. (2022). Analysis of the image of global glacier tourism destinations from the perspective of tourists. Land, 11(10), 1853. https://doi.org/10.3390/land11101853
Tang, J., Meng, Z., Nguyen, X., Mei, Q., & Zhang, M. (2014). Understanding the limiting factors of topic modeling via posterior contraction analysis. Proceedings of the 31st International Conference on Machine Learning (pp. 190-198). Beijing, China: JMLR: W&CP.
Twil, A., Bidan, M., Bencharef, O., Kaloun, S., & Safaa, L. (2021). Exploring destination’s negative e-reputation using aspect based sentiment analysis approach: Case of Marrakech destination on TripAdvisor. Tourism Management Perspectives, 40, 100892. https://doi.org/10.1016/j.tmp.2021.100892
Vargas-Calderón, V., Moros Ochoa, A., Castro Nieto, G. Y., & Camargo, J. E. (2021). Machine learning for assessing quality of service in the hospitality sector based on customer reviews. Information Technology & Tourism, 23(3), 351–379. https://doi.org/10.1007/s40558-021-00207-4
Viñán-Ludeña, M. S., & de Campos, L. M. (2022). Analyzing tourist data on Twitter: A case study in the province of Granada at Spain. Journal of Hospitality and Tourism Insights, 5(2), 435–464. https://doi.org/10.1108/JHTI-11-2020-0209
Wang, J., Li, Y., Wu, B., & Wang, Y. (2021). Tourism destination image based on tourism user generated content on internet. Tourism Review, 76(1), 125–137. https://doi.org/10.1108/TR-04-2019-0132
Wen, H., Park, E., Tao, C.-W., Chae, B., Li, X., & Kwon, J. (2020). Exploring user-generated content related to dining experiences of consumers with food allergies. International Journal of Hospitality Management, 85, 102357. https://doi.org/10.1016/j.ijhm.2019.102357
Wu, L., Yang, W., Gao, Y. (L.), & Ma, S. (D.). (2022). Feeling luxe: A topic modeling × emotion detection analysis of luxury hotel experiences. Journal of Hospitality & Tourism Research, 47(8), 1425–1452. https://doi.org/10.1177/10963480221103222 (Original work published 2023).
Xu, J., Hsiao, A., Reid, S., & Ma, E. (2023). Working with service robots? A systematic literature review of hospitality employees’ perspectives. International Journal of Hospitality Management, 113, 103523. https://doi.org/10.1016/j.ijhm.2023.103523
Yan,, X., Guo, J., Lan, Y., & Cheng, X. (2013). A biterm topic model for short texts. International World Wide Web Conference (pp. 1445–1456). Rio Ode Karo, Brazil: ACM. https://doi.org/10.1145/2488388.2488514
Zhang, J. (2019). What’s yours is mine: Exploring customer voice on Airbnb using text-mining approaches. Journal of Consumer Marketing, 36(5), 655–665. https://doi.org/10.1108/JCM-02-2018-2581
Zolfaghari, A., & Choi, H. C. (2023). Elevating the park experience: Exploring asymmetric relationships in visitor satisfaction at Canadian national parks. Journal of Outdoor Recreation and Tourism, 43, 100666. https://doi.org/10.1016/j.jort.2023.100666
Zou, L., & Song, W. W. (2016). LDA-TM: A two-step approach to Twitter topic data clustering. 2016 IEEE International Conference on Cloud Computing and Big Data Analysis (ICCCBDA) (pp. 342–347). Chengdu: IEEE. https://doi.org/10.1109/ICCCBDA.2016.7529581
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Olivera Grljević

This work is licensed under a Creative Commons Attribution 4.0 International License.





